How to select Heat Exchanger

You can select heat exchanger simply by the catalog. Please refer to the following instruction.

STEP.1 Working condition check

Check item	Remarks	
Туре	Water-Cooled Shell and Tube type, Air-Cooled type	
Heat exchange amount	If not specified, temperature of inlet and outlet at shell side should be set.	
Working temperature Shell side: inlet and outlet temperature Tube side: inlet temperature		
Max working pressure 1 MPa for both Shell and Tube type and Air-Cooled type		
Flow rate (normal/max)	Shell side: Should be specified Tube side: If not specified, set the same value as a shell side.	

Heat exchanger selection is NOT possible if check item in large character is not specified.

Check item	Remarks	
Fluid type	Shell side: Fluid type, density, and kinematic viscosity Tube side: Type of cooling water	
Allowable pressure drop	If not specified, Shell side: \leq 0.1MPa Tube side: \leq 0.05MPa	
Scale coefficient	If not specified, set 0 m ² °C/W for both shell side and tube side.	
Pipe connection Size and connection type (flange/thread) should be specified.		

 $\langle Standard \ working \ condition \ in \ the \ catalog \rangle$

Fluid: Corresponding to ISO VG46 / Inlet temperature at shell side: 55°C / Inlet temperature at tube side: 30°C

STEP.2 Calculation of required condition

A)	If working condition checked at STEP 1 is almost same with standard condition in the catalog · · · · · · · · · · · · · · · · · · ·	Go to STEP.2- ①
B)	If working condition checked at STEP 1 is NOT same with standard condition in the catalog · · · · · · · · · · · · · · · · · · ·	Go to STEP.6

1)Calculation of heat transfer area

- i) Calculation of heat exchange amount [kW]

 (ρ: specific gravity, C: specific heat)

 Calculate working temperature by the following equation if heat exchange amount and oil flow rate is determined.
 - $Q = W_o \times 60 \times \rho_o \times C_o \times (T_1 T_2)$ = $W_w \times 60 \times \rho_w \times C_w \times (t_2 - t_1)$

ii) Calculation of logarithmic mean temperature difference θ [°C]

$$\theta = \frac{(T_1 - t_2) - (T_2 - t_1)}{2.3 \log \frac{(T_1 - t_2)}{(T_2 - t_1)}}$$

iii) Calculation of required heat transfer area A [m²] (K-value: Overall heat transfer coefficient[W/m²°C])

$$A = \frac{Q \times 1000}{\theta \cdot K}$$

Fig. 1 Although K-value depends on working condition, structure of heat exchanger, and so on, please select mean value of catalog products.

Type of cooling tube	K - Value
Products of Φ 9 low fin tube	350~450
Products of ϕ 12.7 low fin tube	200~250

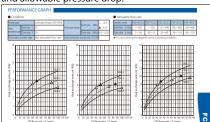
The number right after MODEL CODE (It is directly heat transfer area.)

 $[W:Flow\ rate(\ell/min),T1/T2:Inlet\ and\ outlet\ temperature\ at\ shell\ side(^{\circ}\!C),t1/t2:Inlet\ and\ outlet\ temperature\ at\ tube\ side(^{\circ}\!C)]$

STEP.3 Base model selection

①Select a base model from P.8 – 9 "INDEX" that meets the requirements in STEP 2.

②Refer to the production line-up page of the selected base model.



STEP.4 Size selection

Refer to "PERFORMANCE GRAPH" of the selected model in **STEP 3**, and select the minimum size within the determined condition of heat exchange amount and allowable pressure drop.

Fig. 2 Oil quantity variation

Fig. 3 How to check heat transfer area of heat exchanger.

Fig.2 Oil quantity variation				
	Oil flow rate	Large		Small
	CODE	0	1	2

	rigis now to cheek near durisher area of near exchanger				
all		Туре	How to check		
!		FCF*1、FCD(B)、FCX、FCW、FCU	Divide the last two numbers of MODEL CODE by 20		
		FCF*2、FPD	Divide the last two numbers of MODEL CODE by 2		

(Ex.) In case of FCF-1<u>14</u>-2 ==> $\underline{14} \div 20 = 0.7 \text{m}^2$ *1 FCF-003~FCF-390 *2 FCF-311~FCF-420

FTC(B)、FTS(B)、TEMA

STEP.5 Spec confirmation

OEstimate K-value by back calculating in STEP 2 - ①, and confirm if the heat transfer area of selected model in STEP 4 satisfies required specification.

- a) Estimated K-value equals to the one in **fig.1** \Rightarrow \bigcirc Selected model is OK.
- b) Estimated K-value does not equal to the one in fig.1 \Rightarrow X Back to STEP 4 and select again.

STEP.6 Model selection for other conditions

- Olf standard working condition on the catalog does not meet your requirement or if you request air-cooled type heat exchanger, please fill out necessary items from "Request (Filter/Heat Exchanger)" on our WEB site.
 - Download of drawing, CAD data (outline drawing), and operation manual is available on our WEB site*.
 - $* \ User \ account \ registration \ is \ required \ (for \ free). \ https://www.taiseikogyo.co.jp/en/request_cooler/$

PERFORMANCE GRAPH

100

Oil flow rate (ℓ /min)

150

200

250

50

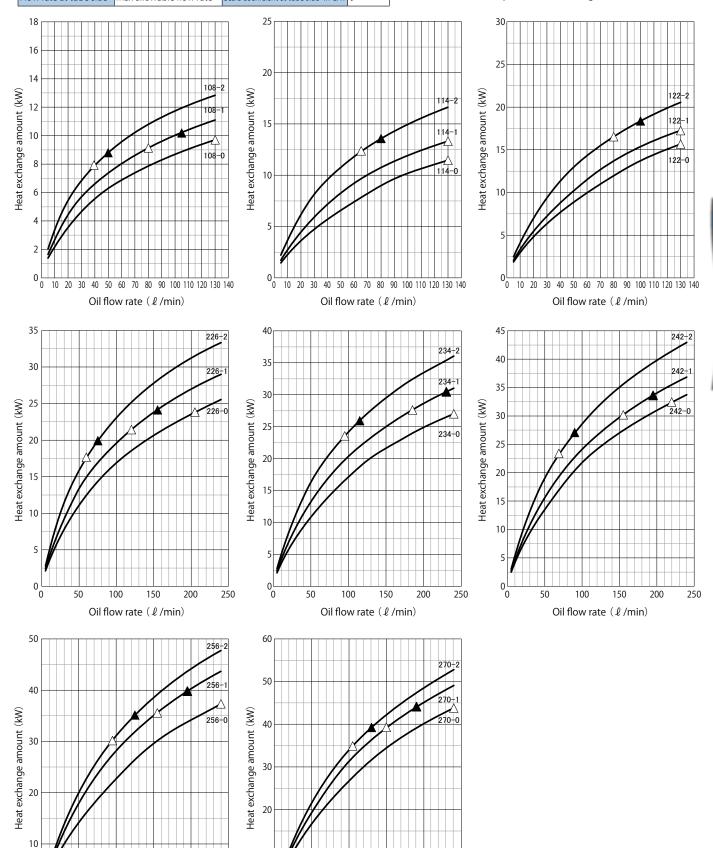
100

150

Oil flow rate (ℓ /min)

200

250


■ Condition

Fluid type		Corresponding to ISO VG46	Shall	Shell side	MPa	△:0.1
IIIICL	Shell side ℃	55	Pressure drop	Stiell Side	IVIFa	▲: 0.15
	Tube side ℃	30		Tube side	MPa	0.01 - 0.03
Flow rate at tube side		May allowable flow rate	Scale coefficient at tube side m ² °C M		n	

■ Allowable flow rate

Model code	FCX-1□□	FCX-2□□
Shell side ℓ/min	~130	15~240
Tube side ℓ/min	10~35	20~80

★ It is max value and It depends on each working condition.

